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SUMMARY: The results of an extensive semi -empi- and X v3 for MSE of r do not require the know- 
rical study on ratio estimators are reported. ledge of 
Assuming simple random sampling and a linear re- The behaviour of estimators of Y and of estima- 
gression model y a +ßx +e with error variance tors of MSE ( or variance) of r (or r) may be in- 
V(elx)axg, g>0, the average mean square errors of vestigated in a variety of ways, including the 
seven ratio estimators of the population mean Y following (McCarthy [6]): (a) Exact analytic, in 
and the average biases and average mean square which the functional form of a distribution or a 
errors of two classical variance estimators and of joint distribution is assumed; approximate 
the 'jack -knife' variance estimator, for a given analytic, in which Taylor series approximations 
x- population, are derived. Employing a wide vari- are used; (c) empirical studies, in which the data 
ety of x- populations, the performances of these from actual surveys are used; and (d) Monte Carlo 
estimators and variance estimators are empirically sampling from synthetic populations. We refer the 
investigated. The applicability of the results reader to Hutchison [3], Rao and Rao [10], McCarthy 
to other sample designs is discussed. [6] and Frankel [2] for details of the available 
1. iwLHODUCTION: In recent years considerable results under the above categories. Some analytic 

attention has been given to the investigation of results, exact for any sample size, have been ob- 

the properties of ratio estimators. Suppose a bi- tained 'by assuming simple random sampling and the model 
variate simple random sample (y ,x.), i= 1,2,..,n, a + + ui 

is to be drawn from a population N units with 
means (,X). If is known, the classical ratio = 0, > 0, t > 0 (1) 

estimator of Y is = rX where r ÿ/x is the 
) 0, i j 1, 2,...,N 

ratio of sample means. Beale's estimatgr i j j 

s s with a gamma distribution for the variates xi, 

= + () /[1 + (-- n N 2] 
where denotes the expectation operator (Rao and 

n N x Rao [10]). However, it is difficult to obtain 
and Tin's estimator analogous exact analytic results for more complex 

1 1 sample designs. On the other hand, the empirical 

+ (- n N)( _2)] approach, employing actual survey data, permits the 
x use of complex designs, and the properties of es- 

are approximately unbiased in the sense that their t_imators of many parameters (including or R = 
asymptotic biases do not contain term_ of order 
n-1 and orde where s 

term! 
Y could be investigated with the help of a high 

2(n -1) E(x. -x). speed computer. For instance, Flrankel [2] inves- 
(y._;) and s = (n -1)- . The well known tigated the properties of naive estimators of 
unbiased ratio estimator of Hartley and Ross is ratios, regression coefficients, simple, partial 
given by 

-l) and multiple correlation coefficients for three 
+ -1 rx) sample designs involving 6, 12 and 30 strata re- 

where = n E(y /x.). If the sample is divided spectively and two clusters per stratum selected 
at random into groups each of size p, by simple random sampling. Employing the data 
(n..= pg), Jones's estimator of is collected by the U.S. Bureau of the Census in the 

= (w -1)r' March 1971 Current Population Survey, he generated 
300 (or 200) independent samples for each design 

where w = g[1-(n-p)/N), r, /g, r, (ny and then empirically investigated the behaviour of 
(nx -pi ), and being the simple means from estimators and of variance estimators. Several y- 
the (j= 1,2,..,g). The asymptotic bias characters and a single x- character (size of 
of does not involve terms of order n-1 and cluster) were considered in estimating R. On the 
order N -1. Quenouille's estimator (originally other hand Rao 
proposed for i inite populations) is given by 

[9] considered a wide variety of 

7Q (g- 1)rX, but terms of order 
(y,x)- populations, but confined himself to si mple 

Q = r 
appear random sampling. An obvious limitation of the 

in its asymptotic bias. Finally, Mickey's un- empirical approach is that the results are strictly 
biased estimator f is applicable only to the particular population(s) 

M = rgX + - rgx). considered. However, the empirical studies are 

reduces tog when n =2. The approximately 
extremely valuable in providing guidelines on the 
performances of various methods of estimation. 

unbiased or wholy unbiased ratio estimators are In this paper we employ a semi -empirical approach 
useful in surveys with many strata and small using model (1) and a wide variety of x- popula- 
samples within strata, especially if 'separate' tions. This combination of empirical and analytic 
ratio estimators are appropriate. approaches has obvious advantages as it throws 

We consider three estimators for the mean square further light on the performances of various methods 
error (MSE) of : of estimation. Moreover, it has not been possible 

= (ñ 1 - )(s2 - 2rs + r2s2) to analytically investigate the stabilities of 
y x Beale's estimator and the 'jack- knife' variance 

v2 N 1)(X - 2rsxy + estimator v3 (except for g=2). Although we confine 

and the 'jack - knife' estimator 
ourselves to simple random sampling in this paper, 

2 it is possible to apply the present approach to 
v3 = (1 - n /N) {(g- 1) /g }E(rj - more complex designs by employing suitable exten- 

sions of model (1). For instance, Konijn [5] has 
where s2 = (n- 1)- -ÿ)2. The estimators 2-2,2 proposed an extension of model (1) suitshie for 

403 



two -stage sampling involving unequal probability 
sampling of primaries with or without replacement. 
2. ESTIMATION OF Y: The average MSE of ÿr, under 
model (1), is given by 

e MSE(5 
r 

) 

= e E {R (+i ) - (a }2 

N s 
xs 

where = Eu., E denotes the average over all the 
1 1 s 

(ñ) possible samples s each of size n, = E x s 
and = E u, Noting that E x., 

s tes s 

= and 11) = d E x we get 
1 1 

6 

i 
MSE(ÿr) = Ex + a2E(Aras) + 

N 1 

where the coefficients A and A are functions 
of X and the x- values samprless. The ex- 
pressions for A and A are given in Appendix 
1. Following the above es, we derived the 
average MSE's of 5H, ¡T, y,, y, a d and the 
expressions for the coefficients or and 

(ABS, ABd , 
etcetra) are presented in Appendix 1. 

It is possible to entertain more general models 
than (1) but the derivations become extremely 
tedious and the interpretation of the results will 
be difficult. For instance, if the model 

y. = a + 
+l 

yxi(m 
+l) + ui with the same error 

structure as in (1) is used we2will have to con- 
sider the coefficients of a 

2 
, 

2 
, y , aß, ay, 

for selected values of m and of for selected 
values of t, in order to compare the average MSE's 
of the estimators. 
The computation of the coefficients E(A ), 

E(A ), etcetra, for a given x- population, is 

a high speed computer. Table 1 describes 
the x- populations selected for the present study. 
The populations numbered 1 -12 are natural popu- 
lations with N ranging from 10 to 270 and the 
coefficient of variation (C.V.) of x from 0.17 to 
1.03. Five artificial populations (nos. 13 -17), 
generated from lognormal and gamma distributions, 
are aso included. A computer program to draw all 
the ( ) possible samples of a given size n is 
availkble, but we adopte the following scheme to 
save computer time: If < 2000, draw all the 
(ñ) samples from a given x- population and compute 

Ara E(Aras), Ar6 E(Ards) + 
(Exi /N2), etc.; 

otherwise draw 2000 independent simple random sam- 
ples each of size n when n <20, and approximate A 

2000 ra 

by E Aras /2000 
and so on. We selected 1000 and 

500 independent samples for N >100, n =20 and N >100, 
n =50 respectively. For the estimators involving 
g we consider the case g =n only, as the previous 
results indicate that g =n is a good choice. More- 
over, three t- values in the range 0 to 2 (t =0, 1, 
2) are selected as t is likely to lie between 0 
and 2 in practice. 
The values of the ratios ErTá 

Ara , 

E = /AM6 and so on for n -2, 4, 6, o, 12 and 

5iave been computed (Tables will be published 
elsewhere). The differences in the average MSE's 
of the estimators decrease as n increases and /or 
C.V.(x) decreases. Based on these results, we 
draw the following conclusions: (1) For n >2, 
is preferable to since is substantially 
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greater than 1, for t =0, 1 and for 
t =2 is >O.95 when C.V.(x) is not too large; the 

gain in efficiency of over is considerable 
when t =0. (2) and are consistently 
greater than 1 so ?hat is more efficient than 

; the gain in efficiency generally increases 
with t when n >2. (3) E 

8g>1 
for t =1, 2 and 

for t =0, E close to 1 excepting 
fbrapopulation 10 when The gain in effi- 
ciency of 1T over J is substantial for t =2, es- 
pecially when n and C.V.(x) >0.75. (4) E 
when t =0 and E are significantly largerrtEan 1; 

for t >l, E lut close to 1 when t =1. The gain 
in efficiency of over T could be as high as 
20% when t 2 and a =0. However, when a is sig- 
nificantly different from 0 and mnay strata em- 
ployed, the approximately unbiased or wholly 
unbiased 'separate' ratio estimators are prefer- 
able to r (Hutchison [3]). (5) Yj could lead to 
small gains in efficiency over yQ. Moreover, the 
absolute bias of is generally smaller than that 
of especially for small N. (6) <1 for all 
t when n =2 or for t =1, 2 when n >2; for t =0 
and are close to 1, excepting the population 
10. Moreover, as Beale has pointed out, could 
occasionally take negative values when all sample 
pairs (yi,x.) are positive, whereas y is always 
positive. he conclusions (1) -(4) are in agree- 
ment with previous analytic results under a gamma 
distribution for x. 

3. ESTIMATION OF MSE(ÿr): We turn now to the 
performances of v1, v2 and v3 as estimators of 

The results obtained here are equally 
ap$licable t2 the estimators of MSE(r) but only 
X v2 and X v3 are relevant as X is usually 
unknown when estimating ratios. 

The average bias of vi as an estimator of 
MSE(yr) is given by 

B(vi) = {vi- MSE(yr)} Biaa2 (say), 

i = 1, 2, 3, where Bia and Bib are given in Appendix 
2. The values of Bla and for n =2, 4, 6, 8, 

12, 20 and 50 have been computed. Based on these 
results, a major result is that both and v2 
(t>0) underestimate MSE(ÿr) whereas v3 (with g =n) 
overestimates MSE(ÿr) for all t; v2 leads to over- 
estimation when t =0 and a =0 (this conclusion is in 
agreement with the analytic result under a gamma 
distribution for x). Other conclusions are: 
(1) IB2dI is smaller than for t <1 but the 
difference is small for t especially when n >4; 
the comparison between 

I 
and is not 

clear cut. IB36I is substantially smaller than 
for t=2. 

36 
(2) v or v2 is preferable to 

with respect to the absolute bias. 
The stabilities of the estimators v may be 

judged by comparing their average MSE's. To sim- 
plify the algebra, we assume that the errors u, 
are independently and normally 2istrib}Rted, and 
use the measure cE[ i- cEv 
(cMSE ÿr) +(eMSE rather than cE[vi_MSE(ÿ 
but the conclusions are not likely to be different 
fEom the latter Let ¡E[v, -cMSE 
a +a 

6M. 
and 

=a E(Mias) ) 

+d 2E(Mi6s). The formulae for 
M' , M' 

and 
s 

Mills 
will be published elsewhere. The values of 

M. , 

and M.6 for n =2, 4, 6, 8, 12, 20 and 50 
have been computed. On the basis of these results 
we draw the following conclusions: (1) is 



smaller than M which in turn is much smaller 
than M 

a 
and a2simílar pattern for M2 

6 
and 

M far all t, especially for smaller n ana for 
plations with large C.V.(x). (2) is 

smaller than for all t but the difference is 
small for t =0 ad 1, when n >20. (3) Mix is 
smaller than 

M26 
for t =0 and 1, but larger 

for t =2; Mi6 is slightly smaller than M for t =2. 
The resultt on and v2 are in agreelmedt with the 
analytic results under a gamma distribution for x 
(no analytic result on the average MSE of v3 with 
g =n is available). 
4. CONCLUDING REMARKS: Our results are immedi- 
ately applicable to single -stage cluster sampling 
within strata, provided simple random sampling and 
'separate' ratio estimators are used. We simply 
replace the variates y. and x by the cluster to- 
tal Y and the cluster size Mi respectively 
(1= 1,...,N). Cochran [1, p.256] proposed a model 
of the form (1) for cluper sapling: Yi- 

a 
with E(uiIMi) =0 and E(uiIMi) =M1 g, g >0, where g 
is likely to lie between 0 and 1 which corresponds 
to our t between 1 and 2. Our results on estima- 
tion of are also applicable to sub -sampling of 
clusters. If ¡4 denotes an unbiased estimator of 
the cluster meas Y., the ratio estimators are as 
before provided y.land xj are replaced by 
and M respectively. Tñe between- cluster compo- 
nent of the MSE is the same as the MSE in 
single -stage cluster sampling. Consequently, the 
comparisons in Section 2 provide guidelines for 
the choice of a ratio estimator even when the 
clusters are sub -sampled. The variance estimators 
vi, v2 and vq are applicable to sub -sampling pro- 
vided the clusters are selected with replacement 
or n/N is negligible, but their properties remain 
to be investigated. 

If one uses the naive estimators ignoring the 
design effect and the model (1) with a gamma dis- 
tribution for x is valid, the average MSE's would 
be independent of the sample design and, conse- 
quently, the previous analytic results for simple 
random sampling remain valid. However, the model 
(1) may not be realistic for some of the sample 
designs. For instance, with stratification it may 
be more reasonable to assume different intercepts 

and /or different regression coefficients 
between strata. Similarly, a model of the form 
(1) with correlated errors is more realistic 
when systematic sampling is employed. 
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TABLE 1 Description of x- population 

Pop. 

no. 
Source N 

1 [1], p.204 10 

2 [7], p.131 176 
3 [13], p.159 43 

4 [7], p.127 128 
5 [12], p.256 89 

6 [7], p.178 108 
7 [11], p.61 35 

8 [7], p.228 80 

9 [7], p.228 80 
10 [4], p.625 270 
11 [1], p.156 49 
12 [1], p.183 34 

13 [8] 50 

14 [8] loo 
15 [8] 200 
16 [8] 100 
17 [8] 200 

C.V.(x) 

eye est. wt. 0.17 
of peaches 
length of timber 0.42 
no. persons in 0.45 
a kraal 
no. persons 0.60 
no. villages 0.61 
in a circle 
geographical area 0.69 
area under 0.71 
crops and grasses 
capital and output 0.75 
no. workers 0.95 
no. dwellings 0.99 
size of cities 1.01 
no. 'placebo' 1.03 
children 
lognormal 0.73 
gamma 0.79 
gamma 0.82 
lognormal 0.82 
lognormal 0.85 

APPENDIX 1: Formulae for the coefficients in the 
average MSE's of ratio estimators. 
The average MSE of ÿr, under the model (1), is 

given by a(xt) 

- + a2E(Aras) + aEE(Ards) 
N 

N 
where (xt)p = Exi, E denotes the expectation over 

all possible samples of a given size, and the 
coefficients Ar , A are given below. Similar 
notation is useeasforrtRe other estimators , 

and ¡T. 
CTassmcal ratio: 

N2Aras (COs - N)2 

N2Aras 
= -2) 

where 

(xt) s a0s = (x)p /(x)s. 


